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1
EXPORTING GUEST SPATTIAL LOCALITY TO
HYPERVISORS

BACKGROUND

Computer virtualization is a technique that involves encap-
sulating a physical computing machine platform into a virtual
machine (VM) executed under the control of virtualization
software on a hardware computing platform. Virtualization
software enables multiple virtual machines to be run on a
single hardware computing platform, and may be used to
manage the allocation of computing resources to each virtual
machine.

VMs executing on a host machine are commonly referred
to as a “guest.” And each guest executes applications, such as
aproductivity application, webserver, database, and/or appli-
cation servers. Spatial locality is a property of an application
that states that if an application accesses a given memory
address, it is likely to subsequently access nearby memory
addresses. Applications exhibit spatial locality in the guest’s
virtual page number address space, referred to herein as
GVPN space.

Virtualization software operates at the guest physical layer,
without easily obtainable information of how guest physical
page numbers (GPPNs) correspond to GVPNs. The locality
exhibited by applications in the GVPN space may not trans-
late to the guest physical layer because the guest operating
system (OS) controls these translations. More specifically, if
the guest OS maps GVPN V to P, it is not guaranteed that
GVPN V+1 is mapped to P+1. Even if the guest OS tries to
maintain spatial locality in the GPPNss, it can be difficult to
preserve due to internal fragmentation and swapping. Some
guest operating systems, such as the Windows®, operating
system simply do not attempt to preserve spatial locality atthe
physical layer. Even in the cases of operating systems that
preferto maintain spatial locality at the physical layer, such as
Linux® operating system, such locality will eventually be
lost after repeated allocations/deallocations.

SUMMARY

One or more embodiments of the present invention provide
techniques for exporting guest spatial locality to hypervisors
to accelerate the process of loading guest physical pages into
memory. According to one embodiment, when a request is
made to retrieve a guest physical page from memory and a
page fault occurs, a guest virtual page address that corre-
sponds to the guest physical page is identified along with
addresses for guest virtual pages that are near the guest virtual
page in the virtual address space. Each identified guest virtual
page address is translated into a corresponding guest physical
page address and the corresponding guest physical pages are
loaded into memory.

Additional embodiments of the present invention provide a
non-transitory computer readable storage medium and a com-
puter system each containing instructions which, when
executed by a processing unit, cause the processing unit to
carry out one or more of the methods described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic diagram of a host machine that is
executing one or more guests, according to an embodiment of
the present invention;

FIG. 1B illustrates the components of the host machine of
FIG. 1A in additional detail;
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FIG. 2A illustrates a method for exposing guest virtual
page spatial locality using a hardware implementation,
according to one embodiment of the invention;

FIG. 2B illustrates a method for exposing guest virtual
page spatial locality using a software implementation,
according to another embodiment of the invention;

FIG. 3 illustrates an example of preserving spatial locality
when performing a migration of a guest from a source host
machine to a destination host machine, according to one
embodiment of the invention;

FIGS. 4A and 4B illustrate an example of preserving spa-
tial locality when performing a host-level swapping, accord-
ing to one embodiment of the invention; and

FIGS. 5A and 5B illustrate an example of preserving spa-
tial locality when performing guest suspends and resumes,
according to one embodiment of the invention.

DETAILED DESCRIPTION

Embodiments of the invention provide methods and sys-
tems that expose GVPN spatial locality when moving running
guests between servers, performing host-level swapping, and
performing guest suspends and resumes. In particular,
embodiments of the invention provide techniques for catch-
ing a page fault for a particular GVPN, locating a nearby
GVPN pages, and translating each nearby GVPN page back
into the GPPN space. Each translated GPPN is subsequently
returned along with the faulted GPPN.

Exporting spatial locality can be used to enhance the per-
formance of guest execution in a variety of scenarios. A first
example is the movement of a running guest from one server
to another server, herein referred to as “live migration.” VMo-
tion™ by VMware, Inc. of Palo Alto, Calif. can be used to
perform such live migrations. The goal of a guest live migra-
tion is to copy or move the complete memory state of a given
guest running on a source host to a destination host—while
the memory state of the guest is changing, with minimum
impact on the performance of the guest. Typically, a live
migration is executed using multiple memory precopy passes,
in which each precopy round copies only memory that has
changed since the last precopy round. Provided that network
bandwidth exceeds the guest’s page “dirty” rate, the precopy
process will eventually converge on a small set of dirty
memory. When this convergence occurs, the source guest is
then stunned, the remaining set of pages is transferred from
the source host to the destination host, and the destination
guest is resumed. For more information on live migration of
guest VM, see, e.g., U.S. Pat. No. 7,484,208, which issued
Jan. 27,2009 and U.S. Pat. No. 7,680,919, which issued Mar.
16, 2010.

However, if the page dirty rate exceeds network band-
width, the source guest may be forced to stop and the desti-
nation guest resumed prior to the entire source guest’s
changed memory contents being transmitted to the destina-
tion host. A background thread continues transmitting the
remaining changed pages from the source guest, linearly, in
GPPN order. As the destination guest encounters pages that
aren’t present in memory (i.e., a page fault), the destination
guest performs remote page faults that pull necessary pages in
from the source guest. This allows the destination guest to
achieve significantly lower application downtime compared
to the alternative of simply stopping the destination guest
until all of the changed memory has arrived. Note that the
time spent handling each remote page fault may impact guest
application performance.

In one embodiment, a GPPN page fault at the destination
guest is caught, the faulted GPPN address is translated into
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the GVPN space, nearby GVPN pages are determined, and
each nearby GVPN page is translated back into the GPPN
space. Each GPPN mapped to GVPNs adjacent the faulted
GVPN is subsequently returned along with the faulted GPPN.
Thus, when the destination guest accesses a subsequent
GVPN, the corresponding GPPN is already loaded into
memory, thereby preventing the costly page fault that typi-
cally occurs using present implementations.

A second example of the benefits of exporting spatial local-
ity can be seen when performing host-level swapping. Host-
level swapping refers to the virtualization manager removing
a guest’s physical pages to alleviate memory pressure when a
host’s memory is over-committed. These pages are typically
relocated to a storage disk. When the guest attempts to
recover these pages the performance can suffer due to swap-in
latency.

To address this scenario, in one embodiment, GVPN spa-
tial locality can be used to predict expected subsequent swap-
in requests. More specifically, nearby pages are pre-fetched
from the storage disk along with the requested page (provided
any GVPN spatially local pages have also been paged out to
disk). Thus, the overall number of guest physical page faults
(GPHYS {faults) and associated swap-ins performed is
reduced.

Still another example is the use of GVPN spatial locality to
enhance the performance of guest suspends and resumes. In
present virtual machine environments, guest suspend opera-
tions write a guest’s memory pages into a file in increasing
order starting with the first GPPN. This approach results in the
same poor spatial locality described above. To address this
scenario, in one embodiment, the guest’s pages are written in
GVPN order. Upon resuming the guest, the above swap pre-
fetch optimization can then be applied. Note, writing the
pages in GVPN order not only encapsulates GVPN mappings
in the file, but also arranges for relevant GPPNs to be written
together linearly.

FIG. 1A is a diagram of a host machine 100 executing one
or more guests, according to an embodiment of the present
invention. The term host machine as used herein refers to a
physical computing device that provides an environment to
execute one or more guests. As shown, the host machine 100
includes a guest 110 and a guest 120, where both the guest 110
and the guest 120 are virtual machines executing applications
on the host machine 100. The host machine 100 also includes
host machine physical pages 102 accessed by the guest 110
and the guest 120. The term “host machine physical page”
means an addressable unit of physical memory. The machine
physical page number (MPPN) is the address of a correspond-
ing machine physical page.

Tlustratively, the guest 110 includes an application 112,
guest virtual page numbers (GVPNs) 114, and guest physical
page numbers (GPPNs) 116. The term guest virtual page
number is used herein to refer to a virtual page number that is
mapped to a guest physical page number, and the term guest
physical page number is used herein to refer to a memory
location treated by the guest system software as a an address
of physical memory but is actually a page number mapped to
a host MPPN, that is a static address of a physical memory
location of the host. Thus, a GPPN does not directly reference
a physical block of memory, but instead references a pointer
(i.e., the MPPN) to a physical block of memory, much like the
GVPN is mapped to the GPPN. As shown, the GPPNs 116 are
mapped to a portion of the host machine physical pages 102.
In some cases, not all of the GPPNs 116 are mapped to a host
machine physical page 102; thus, when an unmapped GPPN
116 is accessed by a guest, a page fault occurs and is handled
according to the techniques described herein. Such mapping
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4

allows the guest 110 to operate using a physical address space
that appears, to the guest 110, to be physically present within
the guest 110. Notably, in most configurations, the number of
host machine physical pages 102 is divisible by the number of
GPPNs 116, thereby allowing a plurality of guests to execute
within the guest 110. As also shown, guest 110 executes
application 112, which references the contiguous GVPNs
114. By “contiguous,” it is meant the address space includes
addresses that are sequentially numbered. Each of the GVPNs
114 are mapped to a specific GPPN 116 which, as depicted in
FIG. 1A, is typically non-contiguous from the perspective of
application 112. Such a virtual memory system allows the
application 112 to reference a virtually contiguous section of
pages that are not necessarily contiguously stored in physical
blocks of memory.

Similarly, the guest 120 includes application 122, GVPNs
124, and GPPNs 126. As shown, the GPPNs 126 map to
MPPNs for host machine physical pages 102 on the host
physical machine 100. Again, such mapping allows the guest
120 to operate using a physical address space that appears, to
the guest 120, to be physically present within the guest 120.
As also shown, the application 122 is executing within the
guest 120, where the application 122 references the contigu-
ous GVPNs 124.

As an example, assume the application 112 is a database
server that is executing within the guest 110, and the appli-
cation 122 is a webserver that is executing within the guest
120, where the guest 110 and the guest 120 are each executing
on the host machine 100. As described above, each of the
guests 110 and 120 operate as if they are each executing on
separate physical host machines, which allows the applica-
tions 112 and 122 to execute on the guests 110 and 120
without any additional configuration. Each of the applications
112 and 122 references the contiguous GVPNs 114 and 124,
respectively. Again, the GVPNs 114 and 124 non-contigu-
ously refer to the GPPNs 116 and 126, respectively, where the
GPPNs 116 and 126 are also non-contiguously mapped to the
host machine physical pages 102.

FIG. 1B is a functional block diagram of a virtualized
computer systems in which embodiments of the invention
may be practiced. Computer system 150 may be constructed
on a conventional server-class, hardware platform 152
including host bus adapters (HBA) 154 in addition to conven-
tional platform processor, memory, and other standard
peripheral components (not separately shown). The term
“HBA” should be broadly construed to include any storage
connectivity interface such as iSCSI, Fibre Channel, as well
as eSATA, SATA, SCSI, IDE, FireWire, USB, etc. Hardware
platform 152 may be coupled to an enterprise-class storage
system 184. Examples of storage systems 184 may be a
network attached storage (NAS) device, storage area network
(SAN) arrays, or any other similar disk arrays. It should also
be recognized that enterprise-level implementations of the
foregoing may have multiple computer systems similar to
computer system 150 that may be connected through various
different known topologies and technologies (e.g., switches,
etc.) to multiple storage systems 184. A virtualization soft-
ware layer (also sometimes referred to as a hypervisor) such
as, for example, VMkernel 156 is installed on top of hardware
platform 152 and supports a virtual machine execution space
158 within which multiple VMs 160,-160,, may be concur-
rently instantiated and executed. Each such virtual machine
160,-160,, implements a virtual hardware (HW) platform 162
that supports the installation of a guest operating system 164
which is capable of executing applications 166. Examples of
guest operating system 164 may be the Microsoft Windows®
operating system, a distribution of the Linux® operating sys-
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tem, Solaris x86, NetWare, FreeBSD or any other supported
operating system. In each instance, guest operating system
164 includes a native file system layer (not shown), for
example, either an NTFS or an ext3 type file system layer.
These file system layers interface with virtual hardware plat-
form 162 to access, from the perspective of guest operating
systems 164, a data storage HBA, which in reality, is virtual
HBA 168 implemented by virtual hardware platform 162 that
provides the appearance of disk storage support (i.e., virtual
disks 170 ,-170,) to enable execution of guest operating sys-
tem 164 transparent to the virtualization of the system hard-
ware.

Although, from the perspective of guest operating systems
164, file system calls to initiate file system-related data trans-
fer and control operations appear to be routed to virtual disks
170,-170,, in reality, such calls are processed and passed
through virtual HBA 168 to adjunct virtualization software
layers (for example, VMM layers 172 ,-172,,) that implement
the virtual system support needed to coordinate operation
with VMkernel 156. In particular, host bus adapter emulator
174 functionally enables guest operating system file system
calls to be correctly handled by VMkernel 156 which passes
such operations through to physical HBAs 154 that connect to
storage system 184. For example, VMkernel 156 may receive
file system calls from VMM layers 172 ,-172,,, and convert
them into file system operations that are understood by virtual
machine file system (VMFS) 176 which in general, manages
creation, use, and deletion of files stored on storage system
184. VMFS 176, in turn, converts the file system operations to
volume block operations, and provides the volume block
operations to logical volume manager (LVM) 178, which
supports volume oriented virtualization and management of
the disk volumes in storage system 184. LVM 178 converts
the volume block operations into raw disk operations for
transmission to device access layer 180. Device access layer
180, including device drivers (not shown), applies command
queuing and scheduling policies to raw disk operations and
sends them to HBAs 154 for delivery to storage system 184.

FIG. 2A illustrates a method 200 for exposing guest virtual
page spatial locality using a hardware implementation,
according to one embodiment of the invention. In this par-
ticular example, a VM kernel hosts a guest and executes on a
processor within a host machine, where the processor is
capable of identifying a guest physical page fault, reading the
faulted guest physical page, and returning the faulted guest
physical page along with the guest virtual page that references
the faulted guest physical page. Such processing capabilities
can be provided by, for example, the Nehalem family of
processors manufactured by Intel Corporation of Santa Clara
Calif. In step 202, the VMKkernel detects a guest physical page
fault for a first GPPN, where an application executing within
the guest is requesting the guest physical page. Such a page
fault may occur when, for example, the data that corresponds
to the guest physical page number is not present in the volatile
memory of the host machine, such as a random-access
memory (RAM). In this example, the data that corresponds to
the guest physical page number is stored in the non-volatile
storage of the host machine, e.g., on a hard drive (HD).
Additional examples of page fault causes include the absence
of a virtual to physical page mapping, an access permission
violation, or writing to read-only memory. When a page fault
occurs, the VMkernel locates the data that corresponds to the
faulted page within the non-volatile storage, reads the data
from the non-volatile storage, and transfers the data into the
volatile memory. When this process completes, the data that
corresponds to the faulted page is accessible in the volatile
memory and can be returned to the application that requested
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the page. Thus, when this page is subsequently accessed by
the application, the data that corresponds to the page is readily
available to be read from the volatile memory, thereby elimi-
nating a page fault and increasing the overall speed of the
application.

In step 204, the VM kernel receives, from the processor, a
guest virtual page number that corresponds to the faulted
guest physical page number. Thus, following step 204, the
physical page is loaded into memory and is returned to the
requesting application as described above.

In step 206, the VM kernel translates nearby guest virtual
page numbers to their corresponding guest physical page
numbers. In one embodiment, the VM kernel is user-config-
ured to determine X virtual addresses that follow (and/or
precede) the returned virtual page number. For example, a
user may configure the VM kernel to gather ten pages that
follow the virtual page of the faulted page when a page fault
occurs. Consider a scenario of a page fault occurring where a
virtual page number of 224 is returned for the faulted page. In
this case, the VM kernel determines that the virtual page
numbers 225-334—and, possibly, the virtual page numbers
215-223, depending on the configuration—are near the
returned virtual page number. Such a configuration, however,
may compromise the performance of the system due to the
latency that accompanies gathering the ten additional physi-
cal pages referenced by the virtual page numbers 225-334.
Note, the VMkernel may also be configured to step both
forward and backward when determining nearby pages, as is
advantageous since applications do not always access virtual
page numbers in sequential order. Each nearby guest virtual
page number is subsequently translated into a corresponding
guest physical page number.

In one embodiment, a page table stores a set of guest virtual
page numbers and their corresponding guest physical page
numbers. This page table may be created by the guest oper-
ating system in accordance with any format that is required by
the processor. In this example, the page table can be thought
of'as having x rows and two columns per row, where the first
column stores the guest virtual page number and the second
column stores the corresponding guest physical page number.
For example, a row may contain information that states that a
guest virtual page 1 corresponds to a guest physical page
number 112, while another row may contain information that
states that a guest virtual page 2 corresponds to a guest physi-
cal page number 62. This information can also be compressed
to reduce the overall size of the page table. The VMkernel can
read this page table and identify the GPPNs that are mapped
to the GVPNs that precede or follow the GVPN of the page
that triggered the guest physical page fault. This step may be
referred to as exporting the spatial locality of the virtual
address space to the hypervisor. Once the GPPNs are known,
the corresponding guest physical pages may be read.

In step 208, the VMKkernel retrieves data that corresponds to
each translated guest physical page number (i.e., the contents
of the associated page in memory) and creates a set that
includes the translated guest physical page numbers and the
retrieved data. The data that corresponds to each translated
GPPN may be present in either the volatile memory or the
non-volatile storage of the host system, depending on condi-
tions such as the last time each guest physical page number
was accessed by the application running on the VM. As
described above in step 202, a page fault occurs when the
processor is unable to locate the data that corresponds to a
guest physical page number in the volatile memory. Alterna-
tively, if the data that corresponds to a guest physical page
number is stored in the volatile memory, a page hit occurs, and
the data is immediately returnable. The VM kernel performs



US 9,086,981 B1

7

a lookup of each of the translated guest physical page num-
bers so that the data referenced by each of the translated guest
physical page numbers is gathered into a returnable set. Each
of the translated guest physical page numbers are included
with the retrieved data in the set, and the step 210 follows.

In step 210, the VM kernel returns the set of guest physical
page numbers and their corresponding data. Therefore, the
VM kernel has successfully exposed guest virtual page spatial
locality by using only a physical page number. Such spatial
locality of the guest virtual pages ensures that, when an appli-
cation accesses nearby virtual page numbers, their corre-
sponding physical pages will be present in volatile memory
thereby eliminating the latency associated with the page
faults that would normally occur.

FIG. 2B illustrates a method 250 for exposing guest virtual
page spatial locality using a software implementation,
according to another embodiment of the invention. In this
example, a VM kernel hosts a guest and executes on a pro-
cessor within a host machine, where the processor is config-
ured to return only the physical address (and not the guest
virtual address) of a page when a page fault occurs. Thus, in
contrast to the method 200, additional software components
(e.g., components of the hypervisor) are required to deter-
mine the guest virtual page number that is associated with the
faulted guest physical page. In step 252, the VM kernel
detects a guest physical page fault for a first guest physical
page number caused by an instruction to access the first guest
physical page number, where an application executing within
the guest requests the guest physical page. Such a page fault
may occur when, for example, the data that corresponds to the
guest physical page number is not present in the volatile
memory of the host machine, such as a random-access
memory (RAM). In this example, the data is stored within the
non-volatile storage of the host machine, such as a hard drive.
Additional examples of page fault causes include the absence
of a virtual to physical page mapping, an access permission
violation, or writing to read-only memory. When a page fault
occurs, the processor locates the data that corresponds to the
faulted page in the non-volatile storage, reads the data from
the non-volatile storage, and transfers the data into the vola-
tile memory. When this process has completed, the data that
corresponds to the faulted page is accessible in the volatile
memory and the data can be returned to the application that
requested the page. Thus, when itis subsequently accessed by
the application, the data that corresponds to the page is readily
available to be read from the volatile memory, avoiding
another page fault on future accesses of the page.

In step 254, the VM kernel interprets an instruction to
determine a guest virtual page number associated with the
faulted guest physical page number. Since in many systems, a
back-map is not available that maps the GPPN to correspond-
ing GVPNs, this mechanism may be used to identify the
GVPN being accessed that triggered the page fault when the
processor does not otherwise provide this information, as was
the case in the embodiment described above with reference to
FIG. 2A. In one example, the VMkernel examines the state of
the processor and registers at the time the execution context
was shifted away from the virtual machine as a result of the
guest physical page fault. When the guest physical page fault
occurs, an exception is triggered and handled by an exception
handler component of the VMkernel. This exception handler
saves the state of the processor to a particular location in
kernel memory. Then, when performing step 254, this state
can be examined to identify the instruction that triggered the
guest physical page fault. The instruction will specify a reg-
ister or other location in memory that contains the address of
the page that caused the fault. Thus, in step 254, the instruc-
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tion triggering the fault can be parsed to determine the virtual
address associated with the page fault that occurs in step 252.
It should be noted that this step may be optimized to ignore
page faults where the faulted page cannot be identified in a
time-efficient manner, such as, for example, indirect jumps.

In step 256, the VM kernel translates nearby guest virtual
page numbers to their corresponding guest physical page
numbers. In one embodiment, the VM kernel is user-config-
ured to determine X virtual addresses that follow (and/or
precede) the returned virtual page number. For example, a
user configures the VM kernel to, when a page fault occurs,
gather ten pages that precede and follow the virtual page of
the faulted page. It is also possible to gather X virtual
addresses that follow the returned virtual page number andY
virtual addresses that precede the returned virtual page num-
ber. Consider the scenario of a page fault occurring and a
virtual page number of 224 is returned for the faulted page. In
this particular configuration, the VM kernel determines that
the virtual page numbers 214-223 and that the virtual page
numbers 225-334 are nearby the returned virtual page num-
ber. Such a configuration, however, may compromise the
performance of the system due to the latency that accompa-
nies gathering the twenty additional physical pages that are
referenced by the virtual page numbers 214-223 and the vir-
tual page numbers 225-334. Alternatively, the user may con-
figure to the VM kernel to only gather a small number pages
that precede the virtual page of the faulted page. Each nearby
guest virtual page number is subsequently translated into a
corresponding guest physical page number.

In one embodiment, a page table stores a set of guest virtual
page numbers and their corresponding guest physical page
numbers. In this example, the page table effectively has x
rows and two columns per row, where the first column stores
the guest virtual page number and the second column stores
the corresponding guest physical page number. This informa-
tion can also be compressed to reduce the overall size of the
page table. The VM kernel passes the guest physical page
numbers to the processor to request a read of each of the guest
physical pages. The processor can translate the guest physical
page numbers to the actual machine addresses where the
corresponding data is stored, and retrieve the data.

In step 258, the VM kernel retrieves data that corresponds
to each translated guest physical page number and creates a
set that includes the translated guest physical page numbers
and the retrieved data. The data that corresponds to each
translated GPPN may be present in either the volatile memory
or the non-volatile storage of the host system, depending on
conditions such as the last time each guest physical page
number was accessed by the application running on the VM.
As described above in step 252, a page fault occurs when the
processor is unable to locate the data that corresponds to a
guest physical page number in the volatile memory. Alterna-
tively, if the data that corresponds to a guest physical page
number is stored in the volatile memory, a page hit occurs, and
the data is immediately returnable. The VM kernel performs
a lookup of each of the translated guest physical page num-
bers so that the data referenced by each of the translated guest
physical page numbers is gathered into a returnable set. Each
of the translated guest physical page numbers are included
with the retrieved data in the set, and the step 260 follows.

In step 260, the VM kernel returns the set of guest physical
page numbers and their corresponding data. Therefore, the
VM kernel has successfully exposed guest virtual page spatial
locality by using only a physical page number. Such spatial
locality of the guest virtual pages ensures that, when an appli-
cation accesses nearby virtual page numbers, the correspond-
ing physical pages will be present in volatile memory thereby.
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In some embodiments, a software implementation of a
memory management unit (MMU) may be used in conjunc-
tion with a shadow page table to provide functionality similar
to that described in the method 250, where the page table
maintains a mapping of MPPNs to machine physical page
numbers (MPPNs) and the shadow page table maintains a
mapping from the GVPNs to the MPPNs. When a page fault
occurs in processors that do not have virtualization exten-
sions, specifically a technology known as EPT for “extended
page tables,” the GVPN of the faulted page will be provided
by the processor when the processor encounters a page fault
when running guest code. Subsequently, the determined
GPPN may be determined from the corresponding GVPN
using the techniques describe above in FIG. 2A.

As described above for FIGS. 2A-2B, both a hardware and
a software implementation may be used to determine the
guest virtual page number of a faulted guest physical page.
This guest virtual page number is then used as a starting point
to determine nearby guest virtual page numbers. When the
nearby guest virtual page numbers have been determined, the
nearby virtual page numbers are translated into correspond-
ing guest physical page numbers, and each guest physical
page is read from memory. Thus, spatial locality in the guest
virtual page space can be used to improve performance in
various scenarios, describe below in FIGS. 3-5.

FIG. 3 is an illustration of preserving spatial locality when
performing a live migration of a guest from a source host
machine to a destination host machine, according to one
embodiment of the invention. The host machine 302 includes
the host machine physical pages 303 allocated to the guest
306 executing on the host machine 302. The guest 306
includes an application 308, guest virtual page numbers
(GVPNs) 310, and guest physical page numbers (GPPNs)
312. As shown, the GPPNs 312 are mapped to the host physi-
cal machine pages 303. The mapping allows the guest 306 to
operate using a physical address space that appears, to the
guest 306, to be physically included within the guest 306. As
also shown, the application 308 is executing within the guest
306, where the application 308 references the contiguous
GVPNs 310. Each of the GVPNs included in GVPNs 310 is
mapped to a specific GPPN 312 which, as depicted in FIG. 3,
is typically non-contiguous. Such a virtual memory system
allows the application 308 to reference a virtually contiguous
section of pages that are not necessarily contiguously stored
in physical blocks of memory.

The host machine 304 includes the host machine physical
pages 305. As shown by an event 330, the guest 306 executing
on the host machine 302 is migrated to the host machine 304.
A user or automated data center management system requests
that guest 306 be migrated to the host machine 304. In one
embodiment, a minimal portion of the data that is required to
execute the guest 306 is transferred from the host machine
302 to the host machine 304 in response to the request. Illus-
tratively, page 3 of the host machine physical pages 303 is
transferred to the host machine physical pages 305, which
includes information required to execute the application 308'.
As also shown, guest 306' is executing within the host
machine 304 using only a minimal amount of data.

Event 332 represents actions performed by both the host
machine 302 and the host machine 304 when a page fault
occurs within the guest 306' when executing the application
308'. Assume for this example that the application 308' is a
database server that is attempting to perform a query on a
table, where the table is addressed to the guest virtual address
number 2 of GVPNs 310'. As shown, the GVPN 2 of GVPNs
310' refers to the GPPN 8 of GPPNs 312", which refers to the
host machine physical page 8 of the host physical machine
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pages 305. Since the host machine physical page 8 has not
been transferred from the host machine 302 to the host
machine 304, a page fault occurs and the application 308'
cannot perform the database query.

To cure this deficiency, a VMkernel executing on the host
machine 304 requests that the host machine physical page 8 of
the host machine physical pages 303 be transferred to the host
machine 304. In addition, the VMkernel executing on host
machine 304 identifies the GVPNs of nearby guest virtual
pages for application 308' and sends a request for those
GVPNs to the host machine 302. A VMkernel executing on
the host machine 302 receives the request for the GVPNs and
translates each to the corresponding machine physical pages.
The VMkernel executing on host machine 302 retrieves the
corresponding machine physical pages and transmits each
back to the guest 306 in operation 334. The VM kernel execut-
ing on the host machine 304 receives each of the guest physi-
cal pages 8, 6 and 5 and inserts each into the appropriate slot
of the host machine physical pages 305. The VM kernel
executing on the host machine 304 may now successfully
perform the query.

As described above, applications exhibit spatial locality
when accessing guest virtual pages and therefore it is likely
that the database server will access guest virtual pages near
the GVPN 2 of the GVPNs 310'". For example, assume the
database server next accesses the GVPN 4 of the GVPNs 310'.
The GVPN 4 ofthe GVPNs 310" references the GPPN 5 of the
GPPNs 312", which maps to host machine physical page 5 of
the host machine physical pages 305. As previously
described, the event 334 returned this host machine physical
page 5 and, therefore, the page is present in the host machine
physical pages 305, and a page hit occurs.

As described above, page faults can be avoided when
migrating a guest VM from a source host machine to a desti-
nation host machine. A minimal amount of data associated
with the guest may be transmitted to the destination host
machine so that the guest can resume execution. In alternate
embodiments, one or two iterations of page transmissions can
occur prior to starting the guest VM on the destination host.
When page faults occur within the guest executing on the
destination host machine, the destination host determines the
virtual address associated with the page, calculates nearby
virtual addresses, and requests the corresponding GPPNs
from the source host, which returns the page contents, along
with the faulted page. Such pages are received by the guest
executing on the source machine, which may then avoid the
latency that is associated subsequent page faults.

FIGS. 4A and 4B illustrate an example of exporting spatial
locality when performing a host-level swap, according to one
embodiment of the invention. As noted, above, host-level
swapping refers to the virtualization manager storing a
guest’s physical pages in non-volatile disk storage to alleviate
memory pressure when a host is over-committed. For
example, assume a host has 2 GB of physical memory avail-
able and spawns three guest instances with 1 GB of memory
each. In such a case, the host is overcommitted by 1 GB.
Frequently, this is not a problem as many guests tend to not
consume all of the memory they are allocated. However,
when overcommitted, the VMkernel may swap some pages
out to disk. Subsequently, when a page fault occurs, the VMk-
ernel may pull into memory not just the page that results in a
page fault, but also nearby pages—nearby relative to the
virtual page space of the guest application. As shown in FI1G.
4 A, the host machine 402 includes the host machine physical
pages 404 that are utilized by the guest 406 executing on the
host machine 402. The guest 406 includes an application 408,
guest virtual page numbers (GVPNs) 410, and guest physical
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page numbers (GPPNs) 412. The GPPNs 412 are mapped to
the host physical machine pages 404. Also as shown, the
application 408 is executing within the guest 406, where the
application 408 references the contiguous GVPNs 410.

Storage 403 is connected to the host machine 402, where
the storage 403 is used to facilitate swapping of the host
machine physical pages 404. In one embodiment, a swap-out
occurs when the host machine 402 hosts an additional guest.
In other embodiments, a swap-out of a VM may occur as a
result of a user limiting the amount of memory allocated to the
VM, or when a VM is configured include an amount of
memory that exceeds the memory thatis available on the host.
Assume the additional guest requires a more memory then is
currently available on the host machine 402. Thus, to free the
amount of memory that is necessary to accommodate an
additional host, a portion of the host machine physical pages
404 can be written to the storage 403. As shown by event 430,
pages 7-12 of the host machine physical pages 404 are trans-
ferred to the storage 403. Of course, any number of pages may
be written to the storage 403.

Turning now to FIG. 4B, the host machine 402 illustrates
the host machine 402 following the transfer of pages 7-12
from the physical pages 404. As shown, the application 408
continues to execute on the guest 406, and the guest 406
continues to execute on the host machine 402. However, the
host machine physical pages 404—which are referenced by
the GPPNs 412, do not include pages 7-12. The event 432
occurs when the application 408 addresses the GVPN 2
within GVPNs 410. As previously described, a page fault
occurs as the GVPN 2 ofthe GVPNs 410 maps to page 8 of the
GPPNs 412, where page 8 of the GPPNs 412 maps to page 8
of'the host machine physical pages 404, which is not currently
present. Thus, a swap-in request is generated for page 8.

A VMkernel executing on the host machine 402 receives
this swap-in request, and in response communicates with the
storage 403 to retrieve page 8. The VMkernel also determines
that the GVPN 2 of the GVPNs 410 references the page 8
(e.g., using the methods described in either FIG. 2A or FIG.
2B). Once determined, the VM kernel calculates the GVPNs
of pages near the GVPN 2 of the GVPNs 410 and translates
each nearby GVPN to the corresponding GPPN. In one
embodiment, the VMkernel is configured to determine two
GVPNs that are nearby the GVPN 2—in this case, GVPN 3
and the GVPN 4, which are translated to the GPPN 9 and the
GPPN 7, respectively. The VM kernel then parses the GPPNs
412 to determine if the translated GPPNs available in the host
machine physical pages 404. For each page not present in the
host machine physical pages 404, the VM kernel communi-
cates with the storage 403 to retrieve the page.

Event 434 occurs when the VM kernel has retrieved page 8
and the nearby pages from the storage 403. As previously
described, pages 8, 9 and 7 were swapped-out to the storage
403 and transmitted by the storage 403 back to the host
machine 402. The VM kernel executing on the host machine
402 receives these pages from the storage 403 and places each
into its respective position within the host machine physical
pages 404.

As described above, applications exhibit spatial locality
when accessing guest virtual pages and therefore it is likely
that the application 408 will access guest virtual pages nearby
the GVPN 2 of the GVPNs 410. For example, assume the
application 408 next accesses the GVPN 4 of the GVPNs 410.
The GVPN 4 of the GVPNs 410 references the GPPN 7 of the
GPPNs 412, which maps to host machine physical page 7 of
the host machine physical pages 404. As previously
described, the event 434 returned this host machine physical
page 7 and, therefore, a page hit occurs.
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FIGS. 5A and 5B illustrate an example of preserving spa-
tial locality when suspending and resuming a guest, accord-
ing to one embodiment of the invention. As shown in FIG. 5A,
the host machine 502 includes the host machine physical
pages 505 used by the guest 506 executing on the host
machine 502. The guest 506 includes an application 508,
guest virtual page numbers (GVPNs) 510, and guest physical
page numbers (GPPNs) 512. As shown, the GPPNs 512 are
mapped to the host physical machine pages 505. As also
shown, the application 508 is executing within the guest 506,
where the application 508 references the contiguous GVPNs
510.

Storage 503 is connected to the host machine 502, where
the storage 503 is used to facilitate guest suspends and
resumes. In one embodiment, the guest 506 is suspended
when a VMkernel executing on the host machine 502 receives
a request to suspend the VM, either from a user or an auto-
mated data center management system. As shown by event
530, the guest 506 is suspended and all of the GPPNs refer-
enced by the GVPNs 510 are transferred to the storage 503 in
GVPN order. More specifically, the VM kernel executing on
the host machine 502 parses the GVPNs 510, where GVPN 1
corresponds to the GPPN 3, GVPN 2 corresponds to GPPN 8,
and so forth. Following the event 530, each of the GPPNs
included in the GPPNs 512 is stored within the storage 503,
and the guest 506 successfully enters a suspend mode. As is
generally known, the suspend operation involves storing the
complete state of the system including the memory allocated
to the kernel and other running programs, as well as processor
and device states. Suspend and resume operations of comput-
ers is well known, so the details need not be discussed here.

In one embodiment, the memory pages are stored to disk
503 in sequence according to the order of the GVPNs. That is,
the GVPN to GPPN page table is traversed for each running
application and the kernel itself, or for a subset thereof, and
the physical pages are stored in an order that they would be
accessed if the GVPNs in the virtual address spaces of the
guest applications and programs were accessed sequentially.
As will be explained in further detail below, this provides a
benefit when accessing nearby pages in the GVPN address
space during the resume operation, since it is much faster to
read a block of sequential data from a disk than it is to read a
group of smaller blocks of data stored in different locations on
the disk.

Turning now to FIG. 5B, the host machine 502 represents
a different host computer on which the guest VM 506 is to be
resumed, or the same the host machine 502, but at a later time.
Event 532 occurs when the host machine 502 begins execut-
ing guest 506. Assume for this example that guest 506 needs
GVPN 1 of GVPNs 510 to begin executing. However, GVPN
1 of the GVPN5s 510 maps to the GPPN 3 of the GPPNs 512,
where the GPPN 3 of the GPPN 512 maps to page 3 ofthe host
machine physical pages 505. Thus, a page fault occurs, and a
VM kernel executing on the host machine 502 is responsible
for locating the page 3 within storage 503. The VMkernel
executing on the host machine 502 receives this request, and
in response, communicates with the storage 403 to retrieve
the page 3. The VMkernel also determines that GVPN 1 of the
GVPNs 510 references page 3 (using methods described
above with reference to either FIG. 2A or FIG. 2B). Once
determined, the VMkernel determines which GVPNs are near
GVPN 1 and translates each one to the corresponding GPPN.
In one embodiment, the VMkernel is configured to determine
two GVPNs that are nearby the GVPN 1—inthis case, GVPN
2 and the GVPN 3, which are translated to the GPPN 8 and the
GPPN 9, respectively. The VMkernel then retrieves pages 3,
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8 and 9 from the storage 503 and returns them to the guest
506, as described below in event 534.

The event 534 occurs when the VMkernel has completed
the processing required by the event 532. As previously
described, each of the pages 3, 8 and 9—along with pages 7,
5 and 11, were relocated to the storage 503 upon the suspen-
sion of the guest 506. The VM kernel executing on the host
machine 502 receives each of these pages from the storage
503 and stores them within the host machine physical pages
505. The VM kernel executing on the host machine 502 then
notifies the guest OS that the GVPN 1 is now available. In this
embodiment, the pages are stored to disk 503 in order of their
corresponding GVPNSs, i.e., GVPNs for application 508 1-6
correspond to GPPNs 3, 8,9, 7, 5, and 11, respectively. Since
this is the order the pages are stored to disk 503, reading out
sequential GVPNs 1-3 can be accomplished with a single
read request to disk 503 of a block of data encompassing
pages 3, 8, and 9, rather than two or three separate read
operations. Since rotating media disks require time to repo-
sition the drive head and the disk under the drive head when
reading each block of data, significant time can be saved when
resuming a guest VM by storing the data as described, i.e., in
order of GVPNs.

As described above, applications exhibit spatial locality
when accessing guest virtual pages and therefore application
508 will likely access guest virtual pages nearby the GVPN 1
of the GVPNs 510. For example, the application 508 next
accesses the GVPN 2 of the GVPNs 510. The GVPN 2 of the
GVPNs 510 references the GPPN 8 of the GPPNs 512, which
maps to host machine physical page 8 of the host machine
physical pages 505. As previously described, the event 534
returned this host machine physical page 8 and, therefore, a
page hit occurs.

Advantageously, the embodiments of the invention provide
methods and systems for preserving spatial locality when
performing migrations of guests from a source machine to a
destination machine, when performing swap-ins and swap-
outs of guests, and when performing suspensions and
resumptions of guests. Applications exhibit spatial locality in
the GVPN space. Embodiments of the invention provide tech-
niques for catching a page fault for a particular GPPN, trans-
lating the faulted GPPN address into the GVPN space, locat-
ing anearby GVPN pages, and translating each nearby GVPN
page back into the GPPN space. Each translated GPPN is
subsequently returned along with the faulted GPPN.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

10

15

20

25

30

35

40

45

50

55

60

65

14

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system. Com-
puter readable media may be based on any existing or subse-
quently developed technology for embodying computer pro-
grams in a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs), such as CD-ROM, a CD-R, ora CD-RW, a
DVD (Digital Versatile Disc), a magnetic tape, and other
optical and non-optical data storage devices. The computer
readable medium can also be distributed over a network
coupled computer system so that the computer readable code
is stored and executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

In addition, while described virtualization methods have
generally assumed that virtual machines present interfaces
consistent with a particular hardware system, persons of ordi-
nary skill in the art will recognize that the methods described
may be used in conjunction with virtualizations that do not
correspond directly to any particular hardware system. Virtu-
alization systems in accordance with the various embodi-
ments, implemented as hosted embodiments, non-hosted
embodiments, or as embodiments that tend to blur distinc-
tions between the two, are all envisioned. Furthermore, vari-
ous virtualization operations may be wholly or partially
implemented in hardware. For example, a hardware imple-
mentation may employ a look-up table for modification of
storage access requests to secure non-disk data.

Many variations, modifications, additions, and improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include components
of a host, console, or guest operating system that performs
virtualization functions. Plural instances may be provided for
components, operations or structures described herein as a
single instance. Finally, boundaries between various compo-
nents, operations and data stores are somewhat arbitrary, and
particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within the scope of the inven-
tion(s). In general, structures and functionality presented as
separate components in exemplary configurations may be
implemented as a combined structure or component. Simi-
larly, structures and functionality presented as a single com-
ponent may be implemented as separate components. These
and other variations, modifications, additions, and improve-
ments may fall within the scope of the appended claims(s).
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We claim:

1. A method for exporting spatial locality in a virtual
address space of a guest executing on a host machine, the
method comprising:

catching a page fault in response to a request to retrieve a

guest physical page;

identifying a guest virtual page address that references the

guest physical page, wherein said identifying the guest
virtual page is performed by one of: (i) hardware
included in the host machine, at the time of the page
fault; and (ii) parsing an instruction of a software appli-
cation executing within the guest virtual page that trig-
gered the page fault;

identifying an address for each of one or more guest virtual

pages that are nearby the guest virtual page;

translating each identified virtual page address into a cor-

responding guest physical page address;

transferring the guest physical page from a storage device

into the memory; and

upon determining any of said corresponding guest physical

pages are not in the memory, transferring said corre-
sponding guest physical pages from the storage device
into the memory.
2. The method of claim 1, wherein the guest physical page
and said corresponding guest physical pages are exported to a
destination machine as page faults occur in a virtual address
space of the destination machine following a migration of the
guest from the source machine to the destination machine.
3. The method of claim 1,
wherein the guest physical page is swapped-out to the
storage device as part of a host-level swap; and

wherein the guest physical page and said corresponding
guest physical pages are transferred from the storage
device to the host machine when performing a swap-in
of'the guest physical page.

4. The method of claim 1, further comprising:

suspending the guest executing on the host machine, the

suspending including writing, in guest virtual address
space order, one or more guest physical pages of the
guest to the storage device;

resuming the suspended guest on one of the host machine

or another host machine; and

exporting said one or more guest physical pages from the

storage device to the one of the host machine or the other
host machine upon the resumption of the suspended
guest.

5. A non-transitory computer-readable storage medium
including instructions that, when executed by a processing
unit of a computer system, cause the processing unit to export
spatial locality in a virtual address space of a guest executing
on a host machine, by performing the steps of:

catching a page fault in response to a request to retrieve a

guest physical page;

identifying a guest virtual page address that references the

guest physical page, wherein said identifying the guest
virtual page is performed by one of: (i) hardware
included in the host machine, at the time of the page
fault; and (ii) parsing an instruction of a software appli-
cation executing within the guest virtual page that trig-
gered the page fault;

identifying an address for each of one or more guest virtual

pages that are nearby the guest virtual page;

translating each identified virtual page address into a cor-

responding guest physical page address;

transferring the guest physical page from a storage device

into the memory; and
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upon determining any of said corresponding guest physical
pages are not in the memory, transferring said corre-
sponding guest physical pages from the storage device
into the memory.
5 6. The non-transitory computer-readable storage medium
of claim 5, wherein the guest physical page and said corre-
sponding guest physical pages are exported to a destination
machine as page faults occur in a virtual address space of the
destination machine following a migration of the guest from
the source machine to the destination machine.
7. The non-transitory computer-readable storage medium
of claim 5,
wherein the guest physical page is swapped-out to the
storage device as part of a host-level swap; and

. wherein the guest physical page and said corresponding
guest physical pages are transferred from the storage
device to the host machine when performing a swap-in
of the guest physical page.

20 8. The non-transitory computer-readable storage medium

of claim 5, wherein the processing unit further performs the
steps of:

suspending the guest executing on the host machine, the

suspending including writing, in guest virtual address

25 space order, one or more guest physical pages of the
guest to the storage device;
resuming the suspended guest on one of the host machine
or another host machine; and
o exporting said one or more guest physical pages from the

storage device to the one of the host machine or the other
host machine upon the resumption of the suspended
guest.

9. A computer system configured to export spatial locality
in a virtual address space of a guest, the computer system
comprising:

a memory;

a storage device for storing guest physical pages; and

a processing unit programmed to perform the steps of:

catching a page fault in response to a request to retrieve
a guest physical page;

identifying a guest virtual page address that references
the guest physical page, wherein said identifying the
guest virtual page is performed by one of: (i) hardware
included in the host machine, at the time of the page
fault; and (ii) parsing an instruction of a software
application executing within the guest virtual page
that triggered the page fault;

identifying an address for each of one or more guest
virtual pages that are nearby the guest virtual page;

translating each identified virtual page address into a
corresponding guest physical page address;

transferring the guest physical page from a storage
device into the memory; and

upon determining any of said corresponding guest
physical pages are not in the memory, transferring
said corresponding guest physical pages from the
storage device into the memory.

10. The computer system of claim 9, wherein the guest
physical page and said corresponding guest physical pages
are exported to a destination machine as page faults occur in
avirtual address space of the destination machine following a
migration of the guest from the computer system to the des-
tination machine.

11. The computer system of claim 9,

wherein the guest physical page is swapped-out to the

storage device as part of a host-level swap; and
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wherein a virtual address spatial locality ofthe guest physi-
cal page is exported from the storage device to the com-
puter system when performing a swap-in of the guest
physical page.

12. The computer system of claim 9, wherein the process-

ing unit is further configured to perform the steps of:

suspending the guest executing on the computer system,
the suspending including writing, in guest virtual
address space order, one or more guest physical pages of
the guest to the storage device; and

exporting the virtual address spatial locality of the guest
from the storage device to the computer system upon a
resumption of the suspended guest.

#* #* #* #* #*
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